Dehydration reverses vasopressin antagonist-induced diuresis and aquaporin-2 downregulation in rats.
نویسندگان
چکیده
To examine the involvement of vasopressin and dehydration in the regulation of aquaporin-2 (AQP2) expression in rat kidney, we investigated the effects of treatment for 60 h with the specific V2-receptor antagonist OPC-31260 (OPC), alone and in conjunction with dehydration for the last 12 h. Changes in AQP2 protein and mRNA expression in kidney inner medulla were determined by Western and Northern blotting, and AQP2 distribution was analyzed by immunocytochemistry and immunoelectron microscopy. Treatment with OPC increased urine output fourfold, with a reciprocal decrease in urine osmolality. AQP2 expression decreased to 52 ± 11% of control levels ( n = 12, P < 0.05), and AQP2 was found predominantly in intracellular vesicles in collecting duct principal cells. This is consistent with efficient blockade of the vasopressin-induced AQP2 delivery to the plasma membrane and with the observed increased diuresis. Consistent with this, AQP2 mRNA levels were also reduced in response to prolonged OPC treatment (30 ± 10% of control levels, n = 9). Five days of treatment with furosemide, despite producing even greater polyuria than OPC, was not associated with downregulation of AQP2 levels, demonstrating that AQP2 downregulation is not secondary to increased urine flow rate or loss of medullary hypertonicity. During 12-h thirsting in the continued presence of OPC, urine output dropped dramatically, to levels not significantly different from that seen in (nonthirsted) control animals. In parallel with this, AQP2 levels rose to control levels. Control experiments confirmed continued effective receptor blockade. These results indicate that the V2-receptor antagonist causes a modest decrease in AQP2 expression that is not a consequence of increased urine flow rate or washout of medullary hypertonicity. However, this decrease is much less marked than that seen in some forms of acquired nephrogenic diabetes insipidus. In conjunction with the effects of thirsting, this suggests that modulation of AQP2 expression is mediated partly, but not exclusively, via V2 receptors.
منابع مشابه
Downregulation of the V2 vasopressin receptor in dehydration: mechanisms and role of renal prostaglandin synthesis.
The vasopressin-aquaporin 2 system plays a key role in urine concentration in dehydration. In contrast to the upregulation of aquaporin 2, the downregulation of the vasopressin V2 receptor in dehydration is known. We investigated the mechanisms of this downregulation in dehydration using reverse transcription-competitive polymerase chain reaction (RT-competitive PCR) and Western blot analysis. ...
متن کاملUpregulation of aquaporin-2 water channel expression in chronic heart failure rat.
Aquaporin-2 (AQP2) mediates vasopressin-regulated collecting duct water permeability. Chronic heart failure (CHF) is characterized by abnormal renal water retention. We hypothetized that upregulation of aquaporin-2 water channel could account for the water retention in CHF. Male rats underwent either a left coronary artery ligation, a model of CHF, or were sham operated. 31-33 d after surgery, ...
متن کاملAngiotensin-(1-7) serves as an aquaretic by increasing water intake and diuresis in association with downregulation of aquaporin-1 during pregnancy in rats.
We previously demonstrated that kidney and urine levels of angiotensin-(1-7) [ANG-(1-7)] were increased in pregnancy. To explore the role of ANG-(1-7) on fluid and electrolyte homeostasis during pregnancy, we evaluated the effect of the ANG-(1-7) antagonist D-alanine-[ANG-(1-7)] (A-779) on kidney function. Virgin and pregnant rats received infusion of vehicle or A-779 (48 microg.kg(-1).h(-1)) f...
متن کاملRole of vasopressin in diabetes mellitus-induced changes in medullary transport proteins involved in urine concentration in Brattleboro rats.
In rats with streptozotocin-induced diabetes mellitus for 10-20 days, we showed that the abundance of the major medullary transport proteins involved in the urinary concentrating mechanism, urea transporter (UT-A1), aquaporin-2 (AQP2), and the Na+-K+-2Cl- cotransporter (NKCC2/BSC1), is increased, despite the ongoing osmotic diuresis. To test whether vasopressin is necessary for these diabetes m...
متن کاملOpioid receptor-like 1 stimulation in the collecting duct induces aquaresis through vasopressin-independent aquaporin-2 downregulation.
Nociceptin, the endogenous ligand of the inhibitory G protein-coupled opioid receptor-like 1 receptor, produces aquaresis (i.e., increases the excretion of solute-free urine) in rats. However, the mechanism underlying this effect has not yet been explained. Using immunohistochemistry, we found the opioid receptor-like 1 receptor in the rat kidney colocalized with the vasopressin-regulated water...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 275 3 شماره
صفحات -
تاریخ انتشار 1998